401 research outputs found

    Assessment of possible impact of a health promotion program in Korea from health risk trends in a longitudinally observed cohort

    Get PDF
    BACKGROUND: Longitudinally observed cohort data can be utilized to assess the potential for health promotion and healthcare planning by comparing the estimated risk factor trends of non-intervened with that of intervened. The paper seeks (1) to estimate a natural transition (patterns of movement between states) of health risk state from a Korean cohort data using a Markov model, (2) to derive an effective and necessary health promotion strategy for the population, and (3) to project a possible impact of an intervention program on health status. METHODS: The observed transition of health risk states in a Korean employee cohort was utilized to estimate the natural flow of aggregated health risk states from eight health risk measures using Markov chain models. In addition, a reinforced transition was simulated, given that a health promotion program was implemented for the cohort, to project a possible impact on improvement of health status. An intervened risk transition was obtained based on age, gender, and baseline risk state, adjusted to match with the Korean cohort, from a simulated random sample of a US employee population, where a health intervention was in place. RESULTS: The estimated natural flow (non-intervened), following Markov chain order 2, showed a decrease in low risk state by 3.1 percentage points in the Korean population while the simulated reinforced transition (intervened) projected an increase in low risk state by 7.5 percentage points. Estimated transitions of risk states demonstrated the necessity of not only the risk reduction but also low risk maintenance. CONCLUSIONS: The frame work of Markov chain efficiently estimated the trend, and captured the tendency in the natural flow. Given only a minimally intense health promotion program, potential risk reduction and low risk maintenance was projected

    Gender Equality and Empowerment for Refugee Women in Return and Reintegration Contexts (Policy Brief)

    Full text link

    The influence of transition metal solutes on dislocation core structure and values of Peierls stress and barrier in tungsten

    Full text link
    Several transition metals were examined to evaluate their potential for improving the ductility of tungsten. The dislocation core structure and Peierls stress and barrier of 1/21/2 screw dislocations in binary tungsten-transition metal alloys (W1x_{1-x}TMx_{x}) were investigated using first principles electronic structure calculations. The periodic quadrupole approach was applied to model the structure of 1/21/2 dislocation. Alloying with transition metals was modeled using the virtual crystal approximation and the applicability of this approach was assessed by calculating the equilibrium lattice parameter and elastic constants of the tungsten alloys. Reasonable agreement was obtained with experimental data and with results obtained from the conventional supercell approach. Increasing the concentration of a transition metal from the VIIIA group, i.e. the elements in columns headed by Fe, Co and Ni, leads to reduction of the CC^\prime elastic constant and increase of elastic anisotropy A=C44/CC_{44}/C^\prime. Alloying W with a group VIIIA transition metal changes the structure of the dislocation core from symmetric to asymmetric, similar to results obtained for W1x_{1-x}Rex_{x} alloys in the earlier work of Romaner {\it et al} (Phys. Rev. Lett. 104, 195503 (2010))\comments{\cite{WRECORE}}. In addition to a change in the core symmetry, the values of the Peierls stress and barrier are reduced. The latter effect could lead to increased ductility in a tungsten-based alloy\comments{\cite{WRECORE}}. Our results demonstrate that alloying with any of the transition metals from the VIIIA group should have similar effect as alloying with Re.Comment: 12 pages, 8 figures, 3 table

    The Precision of the Human Hand: Variability in Pinch Strength and Manual Dexterity

    Get PDF
    Changes in hand morphology throughout human evolution have facilitated the use of forceful pad-to-pad precision grips, contributing to the development of fine motor movement and dexterous manipulation typical of modern humans. Today, variation in human hand function may be affected by demographic and/or lifestyle factors, but these remain largely unexplored. We measured pinch grip strength and dexterity in a heterogeneous cross-sectional sample of human participants (n = 556) to test for the potential effects of sex, age, hand asymmetries, hand morphology, and frequently practiced manual activities across the lifespan. We found a significant effect of sex on pinch strength, dexterity, and different directional asymmetries, with the practice of manual musical instruments, significantly increasing female dexterity for both hands. Males and females with wider hands were also stronger, but not more precise, than those with longer hands, while the thumb-index ratio had no effect. Hand dominance asymmetry further had a significant effect on dexterity but not on pinch strength. These results indicate that different patterns of hand asymmetries and hand function are influenced in part by life experiences, improving our understanding of the link between hand form and function and offering a referential context for interpreting the evolution of human dexterity

    Exercise-induced reversal of age-related declines of oxidative reactions, mitochondrial yield, and flavins in skeletal muscle of the rat

    Full text link
    The ability of gastrocnemius muscle homogenates to catalyze the oxidation of succinate, glutamate + malate, pyruvate + malate, palmitoyl-coenzyme A, decanoylcarnitine and palmitoylcarnitine in the presence of ADP decreased by approximately 32% in sedentary male Sprague-Dawley rats between the ages of 9 and 25 months. Following 21 weeks of treadmill training (running), such homogenates from 25-month-old animals catalyzed oxidations 55% more rapidly than those from 25-month-old sedentary rats, and 17% faster than those from 9-month-old sedentary rats. Total and peptide-bound flavin of gastrocnemius muscles also declined between 9 and 25 months of age and were elevated in the 25-month-old endurance trained rats to levels greater than both 9- and 25-month-old sedentary animals. The yield of protein in the mitochondrial fraction from the quadriceps femoris muscle decreased between 9 and 25 months and was restored to the 9-month level by endurance training. The kinetic characteristics of the isolated mitochondria were not influenced by age or exercise. These data indicate that 2-year-old rats retain the capacity to increase skeletal muscle oxidative capacity and mitochondrial population density in response to endurance training.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/24891/1/0000318.pd

    Urban Movement and Alcohol Intake Strongly Predict Defaulting from Tuberculosis Treatment: An Operational Study

    Get PDF
    BACKGROUND: High levels of defaulting from treatment challenge tuberculosis control in many African cities. We assessed defaulting from tuberculosis treatment in an African urban setting. METHODS: An observational study among adult patients with smear-positive pulmonary tuberculosis receiving treatment at urban primary care clinics in Kampala, Uganda. Defaulting was defined as having missed two consecutive monthly clinic visits while not being reported to have died or continued treatment elsewhere. Defaulting patients were actively followed-up and interviewed. We assessed proportions of patients abandoning treatment with and without the information obtained through active follow-up and we examined associated factors through multivariable logistic regression. RESULTS: Between April 2007 and April 2008, 270 adults aged ≥15 years were included; 54 patients (20%) were recorded as treatment defaulters. On active follow-up vital status was established of 28/54 (52%) patients. Of these, 19 (68%) had completely stopped treatment, one (4%) had died and eight (29%) had continued treatment elsewhere. Extrapolating this to all defaulters meant that 14% rather than 20% of all patients had truly abandoned treatment. Daily consumption of alcohol, recorded at the start of treatment, predicted defaulting (adjusted odds ratio [OR(adj)] 4.4, 95%CI 1.8-13.5), as did change of residence during treatment (OR(adj) 8.7, 95%CI 1.8-41.5); 32% of patients abandoning treatment had changed residence. CONCLUSIONS: A high proportion of tuberculosis patients in primary care clinics in Kampala abandon treatment. Assessing change of residence during scheduled clinic appointments may serve as an early warning signal that the patient may default and needs adherence counseling

    Synthetic Plasmodium-Like Hemozoin Activates the Immune Response: A Morphology - Function Study

    Get PDF
    Increasing evidence points to an important role for hemozoin (HZ), the malaria pigment, in the immunopathology related to this infection. However, there is no consensus as to whether HZ exerts its immunostimulatory activity in absence of other parasite or host components. Contamination of native HZ preparations and the lack of a unified protocol to produce crystals that mimic those of Plasmodium HZ (PHZ) are major technical limitants when performing functional studies with HZ. In fact, the most commonly used methods generate a heterogeneous nanocrystalline material. Thus, it is likely that such aggregates do not resemble to PHZ and differ in their inflammatory properties. To address this issue, the present study was designed to establish whether synthetic HZ (sHZ) crystals produced by different methods vary in their morphology and in their ability to activate immune responses. We report a new method of HZ synthesis (the precise aqueous acid-catalyzed method) that yields homogeneous sHZ crystals (Plasmodium-like HZ) which are very similar to PHZ in their size and physicochemical properties. Importantly, these crystals are devoid of protein and DNA contamination. Of interest, structure-function studies revealed that the size and shape of the synthetic crystals influences their ability to activate inflammatory responses (e.g. nitric oxide, chemokine and cytokine mRNA) in vitro and in vivo. In summary, our data confirm that sHZ possesses immunostimulatory properties and underline the importance of verifying by electron microscopy both the morphology and homogeneity of the synthetic crystals to ensure that they closely resemble those of the parasite. Periodic quality control experiments and unification of the method of HZ synthesis are key steps to unravel the role of HZ in malaria immunopathology
    corecore